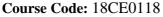
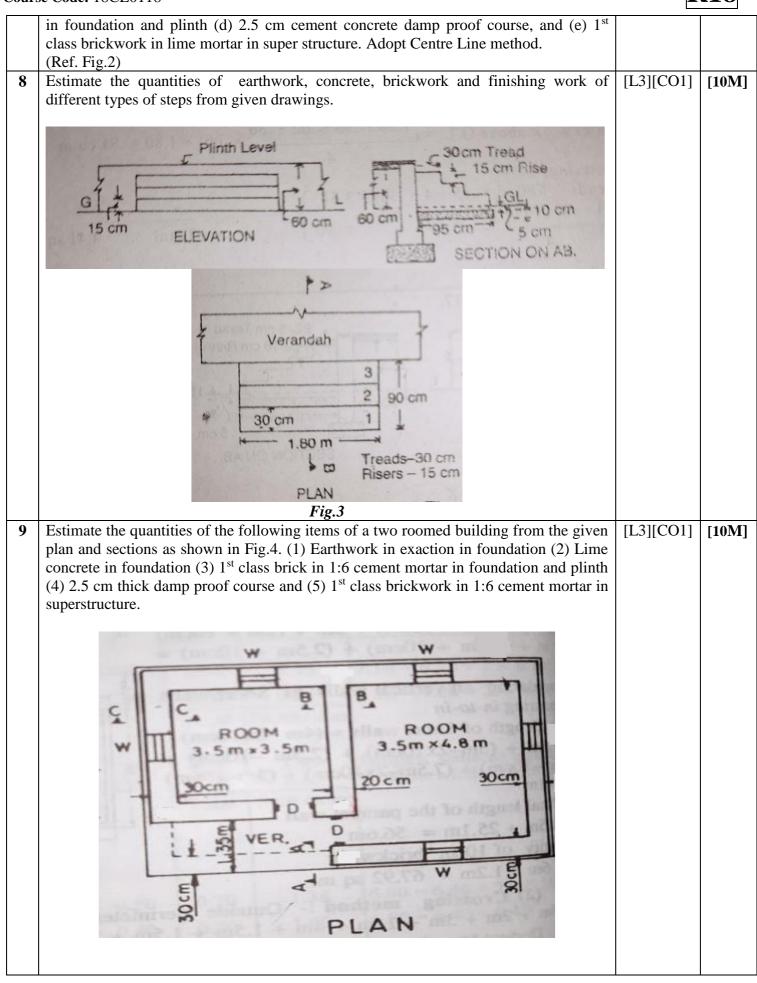
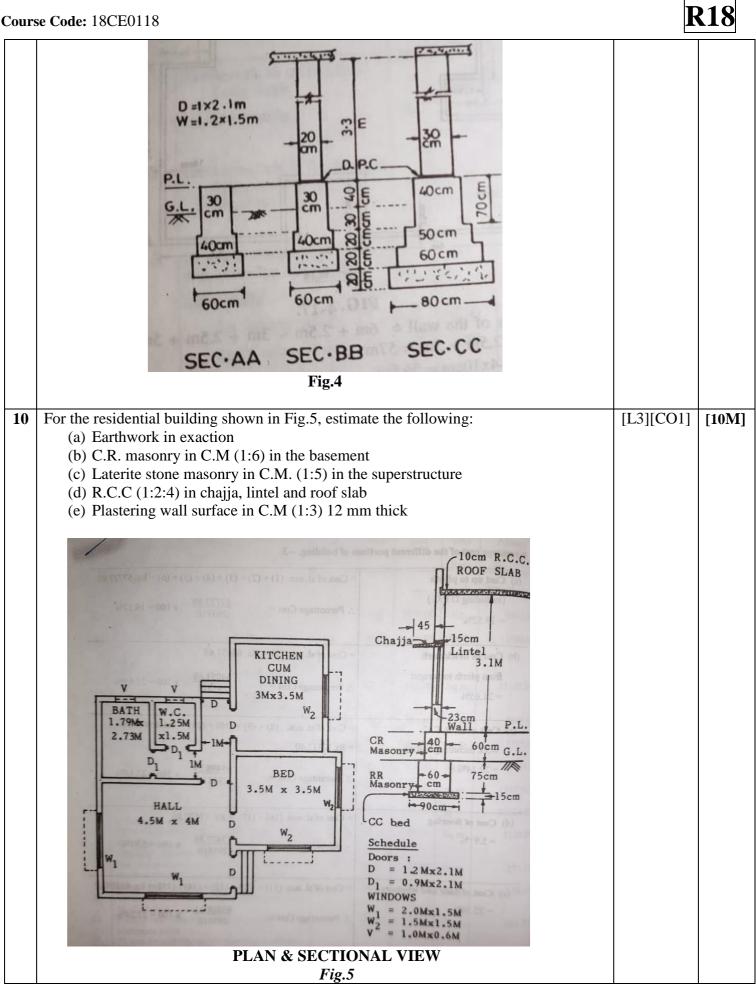
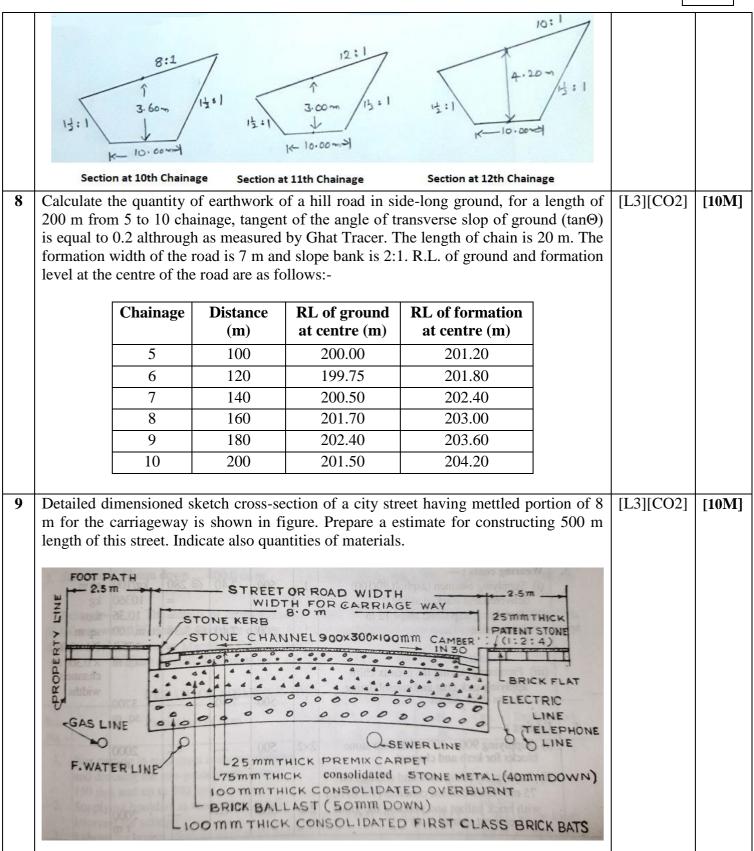

Subject with Code: Estimation, Costing and Valuation (18CE0118)


Course & Branch: B.Tech - CE


Regulation: R18


UNIT –I ESTIMATING AND ESTIMATE OF BUILDINGS

				· · · · · · · · · · · · · · · · · · ·
1	a	Define estimate. What is the purpose of estimate?	[L1][CO1]	[2M]
	b	What are differences between revised and supplementary estimate?	[L2][CO1]	[2M]
	c	Enumerate any eight items of estimate of a building.	[L1][CO1]	[2M]
	d	Calculate the center centre length of brick silo having 2.5 m radius. Thickness of	[L3][CO1]	[2M]
		brick is 10 cm.		
	e	Find the centre length of a garage of 5 m x 8 m (outer dimensions) having 20 cm	[L3][CO1]	[2M]
		brick wall.		
2		t and explain different types of estimates in detail.	[L1][CO1]	[10M]
3		ite brief note on following main items of work (a) Earthwork (b) Concrete in	[L2][CO1]	[10 M]
		ndation (c) Damp proof course (d) Masonry (e) Plastering	H AT C	
4		ntion units of dimensions for various materials and works in construction.	[L2][C01]	[10M]
5		imate the cost of an under ground masonry water tank from the given drawing and	[L3][CO1]	[10M]
		cifications. Take local market rates. Genera specifications: Foundation – CC		
		2:4). Masonry -1^{st} class brickwork in CM (1:4). Flooring -2.5 cm thick artificial pr and well finished with part		
		or and wall finishing. Inside -20 mm cement plaster (1:3) finished with neat nent. Top and outside up to 20 cm below GL -12 mm cement plaster (1:4). (Ref.		
	Fig			
	1 Ig			
		- Kar / The door and a sale in		
		A A A		
		20 cm		
		20cm 4 M		
		Et		
		RI <u>PLAN</u>		
		-4 1-20 cm		
		G G G		
		the second s		
		5 30 4M		
		515.2 EST		
		E - 40 - 2'Scm TH. ARTIFICIAL STONE FLOOR (1:2:4)		
		20 cm		
		CEMENT CONCRETE (1:2:4)		
		SECTION ON·AA		
		Fig.1		

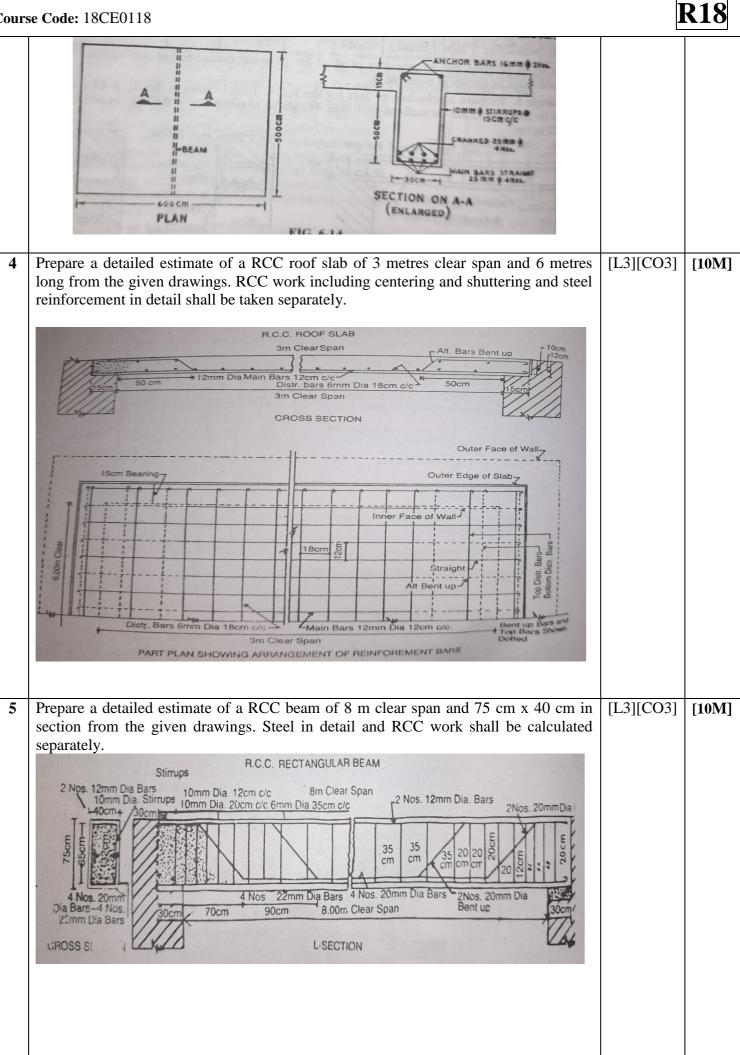


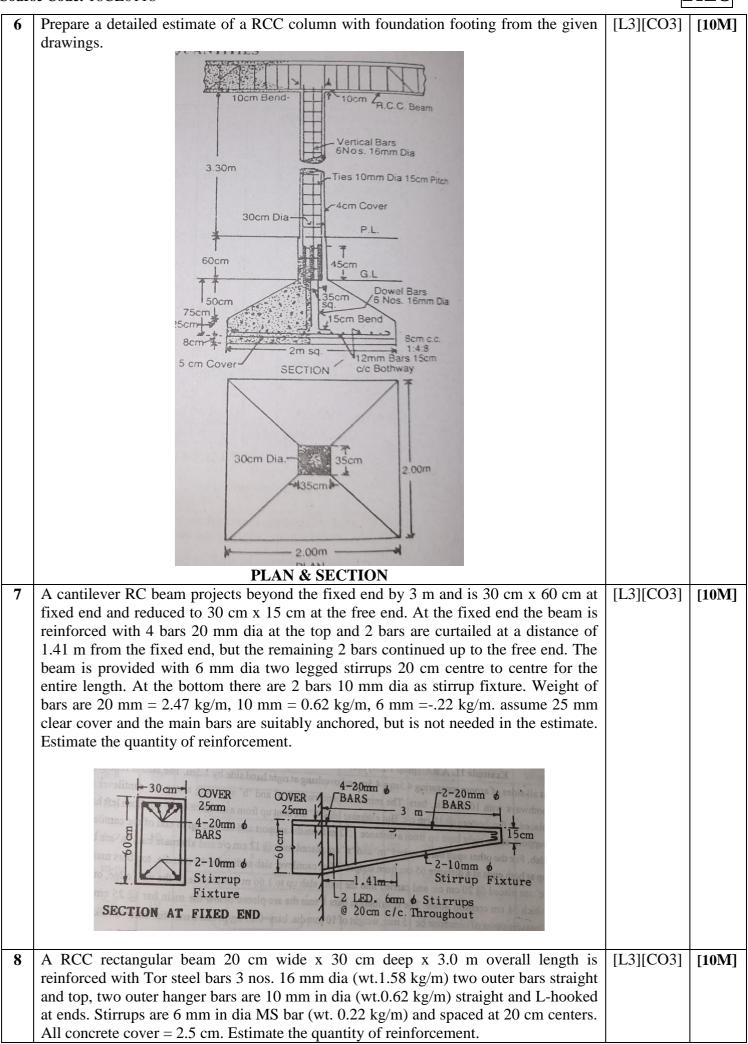
UNIT –II ROAD ESTIMATING AND EARTH WORK FOR CANALS

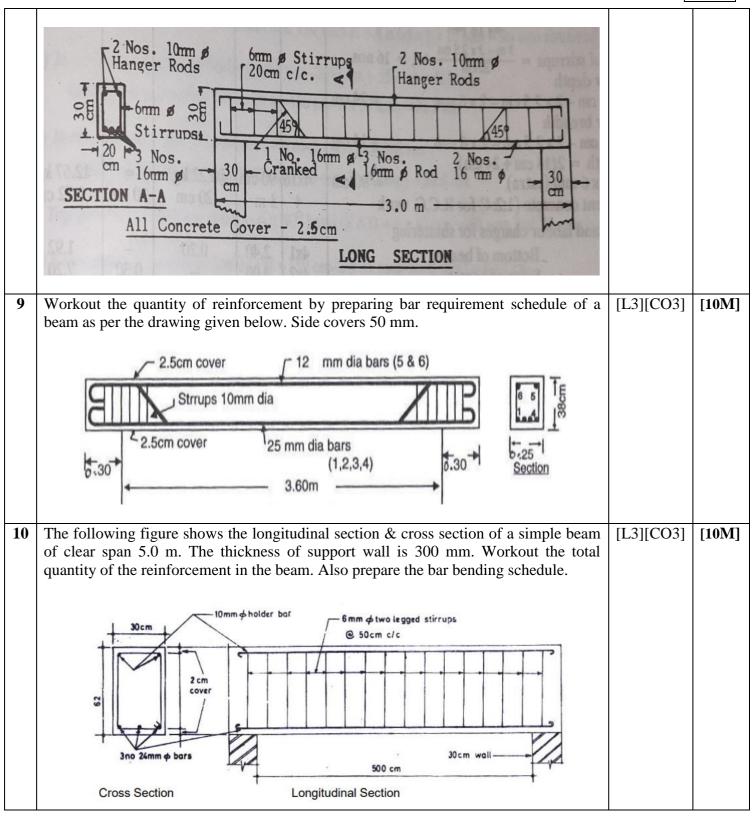
	1					r	
1	a	Define Lead and Lift.				[L1][CO2]	[2M]
	b	Define turfing. Give the equation		[L2][CO2]	[2M]		
		having formation width 'B', for					
		'L'.					
	c	Write Prismoidal formula for c	[L2][CO2]	[2M]			
		A ₂ which are separated by a dis					
	d	List different items of estimation	[L1][CO2]	[2M]			
	e	Draw the canal section havin	[L2][CO2]	[2M]			
	with a neat sketch and mention the dimension.						
2		rite a detailed note on different r				[L1][CO2]	[10M]
3		road portion of 200 m length is	0 0		Ū.	[L3][CO2]	[10M]
		o ends. The road portion in an u	-				
		pes being 2:1 (horizontal: vert	,		1		
		lculate the quantity of earthwor ea Method and Prismoidal For	-				
		ismoidal Formula Method and 1		· · · -			
		the side slopes are to be provide					
		st of pitching at the rate of Rs.22			men, curculate the		
4		duced level (R.L.) of ground alo			road from chainage	[L3][CO2]	[10M]
.		to chainage 20 are given below				[][00]]	[*****]
		ad is in downward gradient of 1			0		
	changes to 1 in 100 downward. Formation width of road is 10 m and side slopes of banking are 2:1 (H:V). Length of the chain is 30 m. Prepare an estimate of earth at the						
		e of Rs.275% cu.m.		-			
		I	Chaircas	DL of ground (m)			
			Chainage 10	RL of ground (m) 105.00			
			10	105.60			
			12	105.44			
			13	105.90			
			14	105.42			
			15	104.30			
			16 17	105.00 104.10			
			19	104.00			
			20	103.30			

00110

	Reduced level (R.	I) of around also							
	10 to chainage 20	are given below.	The formation	tion level at t	he 10 th c	hainage is	107 and	[L3][CO2]	[10 M]
	road is in downwa	-	-		-		-		
	changes to 1 in 100 downward. Formation width of road is 10 m and side slopes of banking are 2:1 (H:V). Length of the chain is 30 m. Find the area of the side slopes and								
	-	_				the side slo	pes and		
	the cost of turfing	the side slopes at	the fate of	KS.00% Sq,III	•				
			Chainage	RL of grou	nd (m)				
			10	105.0	0				
			11	105.6	0				
			12	105.44	4				
			13	105.9	0				
			14	105.42					
			15	104.3					
			16	105.0					
			17	104.1					
		_	18	104.62					
			19	104.0	0				
		–	20	102.2	0				
		of earthwork fo	20 or a portio	103.30		n length fr	rom the	[I_3][CO2]	[10 M]
t	Estimate the cost following data:- Formation width o		or a portio	on of road fo	or 400 n	-		[L3][CO2]	[10 M]
t	following data:-		or a portio	on of road fo	or 400 r	-		[L3][CO2]	[10 M]
t	following data:- Formation width c	of the road is 10 m	or a portio 1. Side slop RL of gr	n of road fo es are 2:1 in t	or 400 r	1.5:1 in cutt		[L3][CO2]	[10 M]
t	following data:- Formation width of Station 25 26	of the road is 10 m Distance in m 1000 1040	or a portio 1. Side slope RL of gro 5 5	on of road fo es are 2:1 in t ound in m 1.00 0.90	or 400 r	1.5:1 in cutt		[L3][CO2]	[10M]
t	following data:- Formation width of Station 25 26 27	of the road is 10 m Distance in m 1000 1040 1080	or a portion. Side slope RL of gro 5 5 5 5	n of road fo es are 2:1 in t ound in m 1.00 0.90 0.50	or 400 r panking RL of f	1.5:1 in cutt formation		[L3][CO2]	[10 M]
t	following data:- Formation width of Station 25 26 27 28	of the road is 10 m Distance in m 1000 1040 1080 1120	or a portio	on of road for es are 2:1 in b ound in m 1.00 0.90 0.50 0.80	or 400 r panking RL of f	1.5:1 in cutt formation		[L3][CO2]	[10 M]
t	following data:- Formation width of 25 26 27 28 29	of the road is 10 m Distance in m 1000 1040 1080 1120 1160	or a portio	on of road for es are 2:1 in b ound in m 1.00 0.90 0.50 0.80 0.60	or 400 r panking RL of f RL of f	1.5:1 in cutt formation formation 52.00.		[L3][CO2]	[10 M]
t	following data:- Formation width of 25 26 27 28 29 30	Distance in m 1000 1040 1080 1120 1160 1200	or a portio	n of road fo es are 2:1 in t ound in m 1.00 0.90 0.50 0.50 0.80 0.60 0.70	or 400 r panking RL of f is s Dov	formation 52.00. vnward		[L3][CO2]	[10 M]
t	following data:- Formation width of 25 26 27 28 29 30 31	Distance in m 1000 1040 1080 1120 1160 1200 1240	or a portio n. Side slope RL of gro 5 5 5 5 5 5 5 5 5 5 5 5 5	on of road for es are 2:1 in b ound in m 1.00 0.90 0.50 0.50 0.80 0.60 0.70 1.20	or 400 r panking RL of f RL of is Dow gradie	1.5:1 in cutt formation formation 52.00. vnward ent of 1in		[L3][CO2]	[10 M]
t	following data:- Formation width of 25 26 27 28 29 30 31 32	Distance in m 1000 1040 1080 1120 1160 1200 1240 1280	or a portio	n of road for es are 2:1 in b ound in m 1.00 0.90 0.50 0.50 0.60 0.60 0.70 1.20 1.40	or 400 r panking RL of f RL of is Dow gradie	formation 52.00. vnward		[L3][CO2]	[10 M]
t	following data:- Formation width of 25 26 27 28 29 30 31	Distance in m 1000 1040 1080 1120 1160 1200 1240	or a portio n. Side slope RL of gro 5 5 5 5 5 5 5 5 5 5 5 5 5	on of road for es are 2:1 in b ound in m 1.00 0.90 0.50 0.50 0.80 0.60 0.70 1.20	or 400 r panking RL of f RL of is Dow gradie	1.5:1 in cutt formation formation 52.00. vnward ent of 1in		[L3][CO2]	[10 M]




10	Calculate the Bed width = 1.5:1; Full su	[L3][CO2]	[10 M]				
	1.5.1, 1 un su						
		0	225.24	224.00			
		30	224.80	223.94			
	60 224.43 223.88						
		90	224.12	223.82			
		120	224.50	223.76			
		150	224.98	223.70			
			I		1		


UNIT –III R.C.C WORKS

1	a Draw a semi-circular hook and right angle bend at end anchorage of reinforcement.	[L2][CO3]	[2M]
	b What are different types of reinforcement bars used in RCC members?	[L2][CO3]	[2M]
	c What are percentage of steel of concrete in general in different types of RCC	[L1][CO3]	[2M]
	members?	[21][000]	
	d What is schedule of bars?	[L1][CO3]	[2M]
	e What are different items of work estimated in reinforced cement concrete work?	[L1][CO3]	[2M]
2	Prepare a schedule of bars for the RCC lintel shown in figure assuming bearing of the	[L3][CO3]	[10M]
	lintel be 15 cm on walls at each side. Weight of 100 mm dia bar = 0.62 kg/rm and 6		
	mm dia bar = 0.22 kg/rm.		
	b=2 Nos. 10mm & Cranked Bar c=2 Nos. 10mm Hanger Bar		
	c=2 Nos. 10mm Hanger Bar $C=2$ Nos. 777		
	13 cm bic=4Nos		
	17/1 +2a: 61 /11: 10 / V/ 10 / 10 m Ø		
	d=6mmø Stirrups -		
	asb=4Nos.		
	LONGITUDINAL SECTION CROSS SECTION CROSS SECTION		
	AT MID SPAN AT SUPPORT		
3	A room 600 cm long x 500 cm wide has a flat roof. There is one T-beam in the centre	[L3][CO3]	[10M]
	(cross section below the slab 30 cm x 50 cm) and the slab is 15 cm thick. Estimate the		
	quantity of iron bars required for reinforcement (for the T-beam only) from the data		
	given below :-		
	Main bars – 8 nos. 25 mm dia. in 2 rows of each (all 4 in the bottom being straight an		
	others bent)		
	Strirrups – 10 mm dia. and 15 cm centre to centre throughout		
	Anchor bar $- 2$ nos. 16 mm dia		
	$T = 2 \mod -2 $		

Course Code: 18CE0118

UNIT –IV ANALYSIS OF RATES

1	a Define rate analysis. What is the purpose of rate analysis?	[L1][CO4]	[2M]
	b What are the factors on which rate of particular item of work depends?	[L1][CO4]	[2M]
	c List various expenses that comes under overhead costs.	[L1][CO4]	[2M]
	d What are different quantities required for brickwork in 1:6 cement sand mortar for	[L3][CO4]	[2M]
	10 cu.m?		
	e Mention volume of ballast, sand and cement for 10 cu,m of 1:2:4 cement concrete.	[L3][CO4]	[2M]
2	(a) Prepare the rate per cu.m for 1:2:4 cement concrete.	[L3][CO4]	[5M]
	(b) Arrive the rate for I-class brickwork in superstructure with 20 x 10 x 10 cm brick	[L3][CO4]	[5M]
	with 1:6 cement sand mortar.		
3	Work out rate per cu.m for RCC work in beams and slabs with 1:11/2:3 cement	[L3][CO4]	[10M]
	concrete.		
4	(a) Prepare the reate per cu.m for random rubble stone masonry in superstructure in	[L3][CO4]	[5M]
	1:6 cement sand mortar.		
	(b) What is the rate per sq.m for constructing 12 mm thick cement plastering in ceiling	[L3][CO4]	[5M]
	with 1:3 cement sand mortar?		
5	Calculate the rate per cu.m for providing and laying plain cement concrete (M10)	[L3][CO4]	[10M]
	nominal mix in foundation trenches including compacting and curing.		
6	(a) Prepare rate per cu.m for exaction over are for a basement in hard soil, depth 1.5 m	[L3][CO4]	[5M]
	and removing the material through a distance of 50 m.		
	(b) prepare rate per sq.m for laying Mosic or Terrazo title floor.	[L3][C04]	[5M]
7	(a) Perform rate analysis for arrive rate per sq.m for 1:2 cement mortar in pointing.	[L3][CO4]	[5M]
	(b) What is the rate per sq.m for providing white washing one coat?	[L3][CO4]	[5M]
8	(a) Prepare rate per cu.m for constructing rubble stone masonry in superstructure 1:6	[L3][CO4]	[5M]
	cement sand mortar.		
	(b) Prepare rate per sq.m for painting one coat over a coat of priming.	[L3][C04]	[5M]
9	(a) Prepare rate for ashlar masonry in superstructure in 1:6 cement sand mortar.	[L3][CO4]	[5M]
	(b) Calculate rate per sq.m for laying 2 cm thick damp proof course with 1:2 cement		
	mortar.	[L3][C04]	[5M]
10	(a) Prepare earthwork in banking or in exaction in road or canal work in layer of 20	[L3][CO4]	[5M]
	cm including ramming, dressing etc., up to 30 m load and 1.5 m lift.		
	(b)arrive rate per sq.m for laying 2.5 cm thick 1:1.5:3 cement concrete as damp proof	[L3][CO4]	[5M]
	course.		

UNIT –V SPECIFICATIONS & VALUATION

			
1	a Write brief note on types of specifications.	[L1][CO5]	[2M]
	b What are principles adopted while writing specifications?	[L1][CO5]	[2M]
	c What is the purpose of valuation?	[L1][CO6]	[2M]
	d What is the difference between scrap value and salvage value?	[L2][CO6]	[2M]
	e What is the difference between obsolescence and depreciation?	[L2][CO6]	[2M]
2	List and explain general specifications of a first class building.	[L2][CO5]	[10M]
3	Write detailed specification for earthwork exaction.	[L2][CO5]	[10M]
4	Give detailed account on specifications of 1:2:4 cement concrete.	[L2][CO5]	[10M]
5	What are different specifications for first class brick work.	[L2][CO5]	[10M]
6	List and explain various methods of calculating depreciation.	[L2][CO6]	[10M]
7	Give detailed account on different methods of valuation.	[L2][CO6]	[10M]
8	A three-storied building is standing on a plot of land measuring 800 sq.m. The plinth	[L3][CO6]	[10M]
	area of each storey is 400 sq.m. The building is of RCC framed structure and the		
	future life may be taken as 70 years. The building fetches a gross rent of Rs.1500.00		
	per month. Work out the capitalized value of the property on the basis of 6% net yield.		
	For sinking fund 3% compound interest may be assumed. Cost of land may be taken		
	Rs.40.00 per sq m. Other data as required may be assumed suitably.		
9	In a plot of land costing Rs.20,000.00 a building has been newly constructed at the	[L3][CO6]	[10M]
	total cost of Rs.80,000.00 including sanitary and water supply works, electrical		
	installation, etc. The building consists of four flats for four tenants. The owner expects		
	8% return on the cost of construction and 5% return on the cost of land. Calculate the		
	standard rent for each flat of the building assuming:-		
	(i) The life of the building as 60 years and sinking fund will be created on 4% interest		
	basis.		
	(ii) Annual repairs cost at 1% of the cost of construction		
	(iii) Other outgoings including taxes at 30% of the net return on the building.		
10	Calculate the standard rent of a Government residential building newly constructed	[L3][CO6]	[10M]
	from the following data –		
	(i) Cost of land – Rs.10,000.00		
	(ii) Cost of construction of the building – Rs.40,000.00		
	(iii) Cost of roads within the compound, and fencing – Rs.20,00.00		
	(iv) Cost of sanitary and water supply works – 8% of the cost of building		
	(v) Cost of electric installation including fans -10% of the cost of building		
	(vi) Municipal House tax – Rs.400.00 per annum		
	(vii) Water tax – Rs.250.00 per annum		
	(viii) Property tax – Rs.140.00 per annum		