SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Estimation, Costing and Valuation (18CE0118)

Course \& Branch: B.Tech - CE
Regulation: R18

UNIT -I
 ESTIMATING AND ESTIMATE OF BUILDINGS

6 Estimate the quantities of the following items of a two roomed building from the given plan and section. The general specifications are as follows: (a) Earthwork in exaction in foundation, (b) Lime concrete in foundation (c) $1^{\text {st }}$ class brickwork in cement mortar in foundation and plinth (d) 2.5 cm cement concrete damp proof course, and (e) $1^{\text {st }}$ class brickwork in lime mortar in super structure. Adopt Long Wall Short Wall method. (Ref. Fig.2)

PLAN

SECTION A-A

Fig. 2

7 Estimate the quantities of the following items of a two roomed building from the given

10	For the residential building shown in Fig.5, estimate the following: (a) Earthwork in exaction (b) C.R. masonry in C.M (1:6) in the basement (c) Laterite stone masonry in C.M. (1:5) in the superstructure (d) R.C.C (1:2:4) in chajja, lintel and roof slab (e) Plastering wall surface in C.M (1:3) 12 mm thick PLAN \& SECTIONAL VIEW Fig. 5	[L3][CO1]	[10M]

UNIT -II
 ROAD ESTIMATING AND EARTH WORK FOR CANALS

1	a	Define Lead and Lift.			[L1][CO2]	[2M]
	b	Define turfing. Give the equati having formation width ' B ', 'L'.	on for calc ormation de	lating turfing area for a road in banking oth ' d ', side slopes $\mathrm{S}: 1(\mathrm{H}: 1)$ and length	[L2][CO2]	[2M]
	c	Write Prismoidal formula for A_{2} which are separated by a d	calculating stance or le	uantity of earth, for two sections A_{1} and gth L.	[L2][CO2]	[2M]
	d	List different items of estimati	n in metall	d road construction.	[L1][CO2]	[2M]
	e	Draw the canal section havin with a neat sketch and mention	g Partly in the dimens	Excavation and Partly in Embankment on.	[L2][CO2]	[2M]
2	Write a detailed note on different methods of estimating earthwork in construction.				[L1][CO2]	[10M]
3	A road portion of 200 m length is having heights 1.00 m and 1.60 m in banking at the two ends. The road portion in an uniform ground with a formation width 10 m and side slopes being 2:1 (horizontal: vertical). Assume that there is no transverse slope. (i) Calculate the quantity of earthwork using Mid Sectional Area Method, Mean Sectional Area Method and Prismoidal Formula Method. (iii) Compare the two methods with Prismoidal Formula Method and report the difference of quantities in percentage. (iii) If the side slopes are to be provided with a stone pitching of 15 cm thick, calculate the cost of pitching at the rate of Rs.220/- per cu.m				[L3][CO2]	[10M]
4	Reduced level (R.L.) of ground along the centre line of a proposed road from chainage 10 to chainage 20 are given below. The formation level at the $10^{\text {th }}$ chainage is 107 and road is in downward gradient of 1 in 150 up to the chainage 14 and then the gradient changes to 1 in 100 downward. Formation width of road is 10 m and side slopes of banking are $2: 1(\mathrm{H}: \mathrm{V})$. Length of the chain is 30 m . Prepare an estimate of earth at the rate of Rs. 275% cu.m.				[L3][CO2]	[10M]
			Chainage	RL of ground (m)		
			10	105.00		
			11	105.60		
			12	105.44		
			13	105.90		
			14	105.42		
			15	104.30		
			16	105.00		
			17	104.10		
			18	104.62		
			19	104.00		
			20	103.30		

5	Reduced level (R.L.) of ground along the centre line of a proposed road from chainage 10 to chainage 20 are given below. The formation level at the $10^{\text {th }}$ chainage is 107 and road is in downward gradient of 1 in 150 up to the chainage 14 and then the gradient changes to 1 in 100 downward. Formation width of road is 10 m and side slopes of banking are $2: 1(\mathrm{H}: \mathrm{V})$. Length of the chain is 30 m . Find the area of the side slopes and the cost of turfing the side slopes at the rate of Rs. $60 \% \mathrm{sq}, \mathrm{m}$.	[L3][CO2]	[10M]
6	Estimate the cost of earthwork for a portion of road for 400 m length from the following data:- Formation width of the road is 10 m . Side slopes are $2: 1$ in banking $1.5: 1$ in cutting.	[L3][CO2]	[10M]
7	A hill road is to be constructed in side-long ground in cutting. Calculate the quantity of earthwork for two chain length in between $10^{\text {th }}$ to $12^{\text {th }}$ chainage, the length of chain being 30 m . The depth of cutting at the chainage 10 is 3.60 m at the centre and cross slope of ground is $8: 1(\mathrm{H}: \mathrm{V})$. The depth of cutting at the chainage 11 is 3.00 m at the centre and cross slope of ground is $12: 1(\mathrm{H}: \mathrm{V})$. The depth of cutting at the chainage 12 is 4.20 m . The depth of cutting at the chainage 12 is 4.20 m at the centre and cross slope of ground is $10: 1(\mathrm{H}: \mathrm{V})$. Formation width is 10 m and side slopes of cutting 1.5:1 (H:V). Estimate cost of earthwork using Mid-Sectional Area, Mean Sectional Area and Prismoidal Method if the rate of earthwork in exaction is Rs. 275% cu.m.	[L3][CO2]	[10M]

Calculate the quantity of earthwork of a portion of a channel with the following data:Bed width $=3 \mathrm{~m}$; Free board $=44 \mathrm{~cm}$; Slope of digging is $1: 1$; Side slope of banking $1.5: 1$; Full supply depth $=1 \mathrm{~m}$; Top width of both the bank $=1.5 \mathrm{~m}$.

Rd. (m)	Ground level (m)	Proposed bed level (m)
0	225.24	224.00
30	224.80	223.94
60	224.43	223.88
90	224.12	223.82
120	224.50	223.76
150	224.98	223.70

UNIT -III
 R.C.C WORKS

UNIT -IV
 ANALYSIS OF RATES

1				
	b			
	d			
2	(a) Prepare the rate per cu.m for 1:2:4 cement concrete. (b) Arrive the rate for I-class brickwork in superstructure with $20 \times 10 \times 10 \mathrm{~cm}$ brick with $1: 6$ cement sand mortar.			
3	Work out rate per cu.m for RCC work in beams and slabs with 1:11/2:3 cement concrete.			
4	(a) Prepare the reate per cu.m for random rubble stone masonry in superstructure in 1:6 cement sand mortar. (b) What is the rate per sq.m for constructing 12 mm thick cement plastering in ceiling with $1: 3$ cement sand mortar?			
5	Calculate the rate per cu.m for providing and laying plain cement concrete (M10) nominal mix in foundation trenches including compacting and curing.			
6	(a) Prepare rate per cu.m for exaction over are for a basement in hard soil, depth 1.5 m and removing the material through a distance of 50 m . (b) prepare rate per sq.m for laying Mosic or Terrazo title floor.			
7	(a) Perform rate analysis for arrive rate per sq.m for $1: 2$ cement mortar in pointing. (b) What is the rate per sq.m for providing white washing one coat?			
8	(a) Prepare rate per cu.m for constructing rubble stone masonry in superstructure 1:6 cement sand mortar. (b) Prepare rate per sq.m for painting one coat over a coat of priming.			[5M] [5M]
9	(a) Prepare rate for ashlar masonry in superstructure in 1:6 cement sand mortar. (b) Calculate rate per sq.m for laying 2 cm thick damp proof course with 1:2 cement mortar.			
10	(a) Prepare earthwork in banking or in exaction in road or canal work in layer of 20 cm including ramming, dressing etc., up to 30 m load and 1.5 m lift. (b)arrive rate per sq.m for laying 2.5 cm thick 1:1.5:3 cement concrete as damp proof course.			[5M] [5M]

UNIT -V
 SPECIFICATIONS \& VALUATION

	a	rite brief note on types of specification	[L1][CO5]	[2M]
1	b	What are principles adopted while writin	[L1][CO5]	[2M]
	c	What is the purpose of valuation?	[L1][CO6]	[2M]
	d	What is the difference between scrap value and salvag	[L2][CO6]	[2M]
		What is the difference between obsolescence and dep	[L2][CO6]	[2M]
2	List and explain general specifications of a first class building.		[L2][CO5]	[10M]
3	Write detailed specification for earthwork exaction.		[L2][CO5]	[10M]
4	Give detailed account on specifications of 1:2:4 cement concrete.		[L2][CO5]	[10M]
5	What are different specifications for first class brick work.		[L2][CO5]	[10M]
6	List and explain various methods of calculating depreciation.		[L2][CO6]	[10M]
7	Give detailed account on different methods of valuation.		[L2][CO6]	[10M]
8	A three-storied building is standing on a plot of land measuring 800 sq.m. The plinth area of each storey is 400 sq.m. The building is of RCC framed structure and the future life may be taken as 70 years. The building fetches a gross rent of Rs. 1500.00 per month. Work out the capitalized value of the property on the basis of 6% net yield. For sinking fund 3% compound interest may be assumed. Cost of land may be taken Rs. 40.00 per sq m. Other data as required may be assumed suitably.		[L3][CO6]	[10M]
9	In a plot of land costing Rs. $20,000.00$ a building has been newly constructed at the total cost of Rs. $80,000.00$ including sanitary and water supply works, electrical installation, etc. The building consists of four flats for four tenants. The owner expects 8% return on the cost of construction and 5% return on the cost of land. Calculate the standard rent for each flat of the building assuming:- (i) The life of the building as 60 years and sinking fund will be created on 4% interest basis. (ii) Annual repairs cost at 1% of the cost of construction (iii) Other outgoings including taxes at 30% of the net return on the building.		[L3][CO6]	[10M]
10	Calculate the standard rent of a Government residential building newly constructed from the following data - (i) Cost of land - Rs.10,000.00 (ii) Cost of construction of the building - Rs. $40,000.00$ (iii) Cost of roads within the compound, and fencing - Rs.20,00.00 (iv) Cost of sanitary and water supply works - 8% of the cost of building (v) Cost of electric installation including fans -10% of the cost of building (vi) Municipal House tax - Rs. 400.00 per annum (vii) Water tax - Rs. 250.00 per annum (viii) Property tax - Rs. 140.00 per annum		[L3][CO6]	[10M]

Prepared by:
Shaik Nurulla Assistant Professor/Civil Engineering

